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1 Introduction

Angulo is a tool which utilizes the internal sensors (for acceleration and mag-
netic field) of a mobile device to allow measuring angles with it. We assume that
both acceleration (the Earth’s gravitational field) and the surrounding magnetic
field are constant and fixed in space; thus if we measure both at two times and
compare the measured vectors (their directions in particular), we can calculate
how the device was rotated between the measurements.

Thus you can set a “reference point” with the device pointing in one direc-
tion, and rotate it into another one, and have the angle between both directions
calculated. With this tool, one can for instance find out the inclination of a
slope or actually simply measure an angle between any two given directions.

The code is free (released under the GPL), check it out at http://www.
sourceforge.net/projects/angulo/. Angulo runs on Google’s Android op-
erating system (and obviously needs devices which actually have the sensors
used). This document is not intended as an usage introduction, for that see the
built-in help text or the webpage at http://www.domob.eu/projects/angulo.
php. Instead, I want to describe the internal logic here (in particular, how the
shown results are calculated).

Angulo displays measured angles mainly in degrees; for small angles (and
in particular slopes) sometimes also percent are used — where the percent value
corresponds to the tangens of the actual angle. If the angle is small (below 45
degrees), Angulo as a utility feature displays the same angle again in percent.

2 With a Single Sensor

Assume for a moment that we only consider data from a single sensor, and let
it without loss of generality be acceleration. If we measure twice, we get two
vectors a, b ∈ R3. a corresponds to the acceleration at the first measurement
(which Angulo calls the “reference point”), b to that at the second time (which
is the “current” value updated continuously during runtime).

Now, if φ denotes the angle in-between the vectors a and b, elementary vector
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analysis implies that

cos φ =
a · b
|a| |b|

. (1)

Hence, using the arccosine we can easily calculate the angle between both di-
rections. However, since the inner product is symmetric, the same angle will be
reported if we rotate in the opposite direction — which is somewhat counter-
intuitive. On the other hand, the cross-product a × b is antisymmetric. Thus
we can set the sign of φ depending on the direction of n = a × b; since there’s
no “absolute reference” however, Angulo simply uses the sign of the sum of all
component of n as the assumed sign of sinφ and thus φ. That way, if a and b
are flipped (which corresponds to rotating in the opposite direction), also n is
flipped and the sign will be opposite. This is of course an arbitrary choice (and
a lot of other options would be possible), but it makes Angulo display a useful
sign in most circumstances. Just note to be careful in particular with the sign;
but usually, the interesting quantity is anyways the magnitude of the angle and
not its direction (since that is most of the time apparent).

In addition to Equation 1, another relation is

|sinφ| =
|a× b|
|a| |b|

. (2)

If we combine Equation 1 and Equation 2, we get (except for the sign of sin φ,
but the same solution as above applies for the angle’s sign) an even more (nu-
merically) accurate result for the angle.

The problem with this approach is that it only measures the angle between
the two actually measured vectors — which may not always correspond to the
angle the device was actually rotated! For instance, if you rotate it exactly
around the direction of acceleration (which usually means horizontally), the
measured value does not change at all and consequently, Angulo will display
φ = 0 despite there obviously being a nonzero rotation. Since Angulo actually
displays the two angles calculated independently from the direction of accelera-
tion and magnetic field, one can sometimes mitigiate this problem by choosing
one of them over the other, depending on the axis of rotation; but it may well
be that none is correct on its own. See Section 3 for a way to combine both
values into a single measurement that does not have that problem.

3 Combined Angle

As mentioned above, one gets a better estimate on the actual angle if the mea-
surements of both sensors are combined into a single value — this is what
Angulo displays in large, green writing on the bottom of the screen and the
value is supposed to be the most accurate estimate available in most cases. This
works well as long as the directions of both quantities used are not linearly de-
pendent — but since the acceleration is usually pointing straight through the
floor and the magnetic field corresponds to Earth’s magnetic field, those vectors
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being linearly dependent means that the magnetic field is also pointing straight
up or down, which in turn only happens at the magnetic poles. Thus this sit-
uation is quite unlikely, and usually the the assumption of linear independence
is fulfilled.

To make it more precise, let a and b be the values of acceleration and mag-
netic field at the “reference measurement”, respectively. Let further a and b
be linearly independent. After the device is rotated, we assume that the new
directions are Ra and Rb, where R is the three-dimensional rotation matrix
corresponding to the movement of the device. We assume that the “current”
vectors can be represented in this way and clearly R ∈ SO (3).

3.1 Rotation Angle

Assume now that R is known. If we choose a suitable orthonormal coordi-
nate system (with the axis of rotation being the third basis vector), the matrix
representation of R will be

R′ =

 cos φ − sinφ 0
sinφ cos φ 0

0 0 1

 .

Since the trace of a matrix is invariant under basis changes, also

tr R = 1 + 2 cos φ. (3)

It can further be shown (see for instance the thread at http://www.mathworks.
com/matlabcentral/newsreader/view thread/160945) that additionally∣∣∣∣∣∣

 R32 −R23

R13 −R31

R21 −R12

∣∣∣∣∣∣ = 2 |sinφ| (4)

holds. Taking Equation 3 and Equation 4 together, we can again nicely find φ
itself (up to the sign, but again this is not clearly defined). For the sign, the same
rule of thumb is used as in Section 2 — namely all (in total six) components of
a × Ra and b × Rb are summed up, and the sign of this sum is used to adapt
the sign of the resulting angle.

3.2 Finding the Matrix

It remains now to actually find the matrix R from the four vectors a, b, Ra, Rb
that are known. Note that since R is orthogonal and in particular regular, Ra
and Rb are also linearly independent. As a first step, we can orthonormalize the
vectors a and b and extend them to a right-handed orthonormal basis (a′, b′, c′)
of R3:

a′ =
a

|a|
, b̃ = b − (a′ · b) · a′ 6= 0, b′ =

b̃∣∣∣b̃∣∣∣ , c′ = a′ × b′ (5)
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Let B be the matrix formed by those basis vectors as columns; then B ∈ SO (3)
and applying B−1 = B> onto a vector represents it in the basis (a′, b′, c′).

Now, the columns of the representation of R in this basis are simply the
images under R of the basis vectors. But since R is linear and also orthogonal,
it preserves norms and inner products. Thus, we get Ra′, Rb′ and Rc′ by simply
applying the recipe of Equation 5 onto Ra and Rb in the places of a and b. Let
B′ be the matrix whose columns are the vectors Ra′, Rb′ and Rc′, which are
known this way. Then the full matrix is simply:

R = B′B>

Hence, we know all that is necessary for calculating the angle.
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