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1 Introduction

In his novel “Hector Servadac” (see [15] and [12]), Jules Verne describes how a
group of 36 people is mysteriously transferred onto a comet (called “Gallia”) as
it comes in contact with the Earth on New Year’s night of an unspecified year in
the 19th century. Despite the unavoidable violence such a collision must bring
with it, they are all unharmed; and as Gallia also fetches a part of the Earth’s
atmosphere as well as soil, water, vegetation and animals, they can live there
and are taken on a two years’ tour through the solar system.

Gallia’s orbit is elliptical and strongly eccentric, so they first approach the
Sun until reaching the perihelion on Jan, 15th, within Venus’ orbit. Then Gallia
recedes further away for exactly one terrestrial year into the colder regions —
its aphelion lies even outside of Jupiter’s orbit, so Jules Verne lets Gallia’s
little population explore regions of space that were completely out of reach to
humankind of his time (except for the use of telescopes) and are even today for
manned space flight.

To his great pleasure, the peculiar professor Palmyrin Rosette, Gallia’s dis-
coverer while still on Earth, takes part in the journey; additionally, some of the
other inhabitants are somewhat educated in natural philosophy and astronomy
in particular and have books about those topics with them — which means that
Jules Verne has good opportunities to make knowledge of his time about the
solar system known to his readers. As usual with his works, of course he also
makes use of those possibilities.

In this text, I will take a look at certain claims of his concerning some aspects
of Gallia itself and its orbit, to compare and verify statements in the book.
There are a lot of numerical figures, but as it is mostly a work of fiction instead
of science, they are usually given only roughly (additionally at some places
fractional values are approximated by simple fractions like 0.133 being “nearly”
%) — so it is clear that we can’t reasonably expect very precise agreement
between Verne’s claims and calculations of mine. However, a not insignificant
part of his statements agrees within some 10 % of error tolerance which means
that he was probably well aware of the expected correlation between the involved
quantities.

1.1 Units

As opposed to the English translation [12], the French original text [15] nearly
exclusively uses metric units so that it is straight-forward to transfer figures
given to SI for calculations: Lengths are given in metres, masses in kilograms,
times in every-day units of seconds, minutes, hours, days, months and years
(explicitly with the corresponding terrestrial meaning), dates in the usual ter-
restrial calendar and temperatures in centigrades. Because the year when the
collision happens is not explicitly specified, I will number it as year 1 in the
following — it is however known that this year is a leap-year (see [12] ch. 1/18,
line 4284]).

For large lengths however (especially astronomical distances), also the unit
“lieue” (league) is used; I will denote one league as 11 (the unit of litres is never
used throughout this text). According to [13], a possible interpretation that fits
in well with the other units is the metric league with a length of exactly 4 km.

According to [I5, ch. I/8], the average distance between Earth and Sun is



38-10°1. When this is compared to the value of 1 AU, the length of one league
must be 3937 m — within the precision of Verne’s rounded numbers, this clearly
leads to the conclusion that the choice above is reasonable.

1.2 Historical Considerations

“Hector Servadac” was published in 1877 (see [12, preface]). The third edi-
tion of Isaac Newton’s “Philosophiae Naturalis Principia Mathematica” [6] was
published in 1726 more than a century before, which describes the Newtonian
axioms of motion, his theory of gravity and derives Kepler’s laws of planetary
motion from movement within a central force-field (e.g., pages 13f, 38, 52, 390ff,
395ff, 403, 409). This means that at this time, the classical laws of mechanics
and celestial motion were already well known and well analyzed. In fact, Jules
Verne explicitly mentions Kepler’s laws and Newton’s law of gravitation; see for
instance [12], ch. I/15, line 3657] and [12] ch. II/7, line 8280].

Later in the 18th century — also significantly before Jules Verne’s time —
measurements of both the gravitational constant (actually, Earth’s mean density
which implies it, most famously [2]) and the solar parallax (as described in [5])
allowed to estimate the mean distance between Earth and Sun, and from this
both the Sun’s mass and the distances of other planets from the Sun by Kepler’s
laws (those distances are also explicitly mentioned in the novel, for instance at
[15] ch. II/9]). Thus it is clear that we can expect that all necessary aspects of
celestial mechanics were very well known and readily available to Verne at his
time.

For estimation of mean temperature depending on distance from the Sun (as
Idoin , things look different however. While Lord Kelvin introduced
his “absolute thermometric scale” that fixed the point of absolute zero in 1848
(see [10]) and this could (or could not) have been known to Jules Verne, today’s
Stefan-Boltzmann law which will play a significant role in the modeling of tem-
perature was only published in 1879 as [9] — so two years too late for Verne to
know about it. It seems that here he had no real tool in hand for estimation
of the temperature values stated, even if he wanted to be as precise and theo-
retically correct as possible. Even worse, according to [9], the two Frenchmen
Dulong and Petit — whose experimental data Stefan used — had come up with
their own empirical formula to describe radiation, namely that it is proportional
to 1.00777 (as compared to Stefan’s T* that is nowadays accepted). Because
they died in 1838 and 1820, respectively, their results were possibly known to
Verne; so he might even have had a wrong relation available instead of no one
at all. Whether he actually made use of this or tried to model the temperature
of Gallia at all, is not clear of course, though.



Figure 1: Deriving distance of horizon.

2 Dimensions of Gallia

The first things that Captain Hector Servadac and his companion Ben Zoof, two
French soldiers formerly stationed in the French colony of Algeria, notice after
they have been transferred to Gallia together with some parts of Algeria they
were on, are that their weight is strongly diminished, the globe has assumed “a
more decided convexity” [12, ch. I/5, line 749], the Sun is rising in the West
and setting in the East now, and one (synodical) day is reduced to half its
length, namely 12 hours [12, ch. I/6, line 1085]. That is, Gallia is considerably
smaller than the Earth, has a much weaker gravity and rotates with double
angular speed but in retrograde fashion. Additionally, their new position is on
the equator and Gallia’s axis of rotation is not inclined but precisely orthogonal
to its plane of orbit (so that there are no seasons in the classical sense), see [12]
ch. 1/8, line 1574].

2.1 Size and Near Horizon

Later in Verne’s description, Servadac and a party of Russians circumnavigate
Gallia’s equator in a schooner yacht (the “Dobryna”). This leads to the only
real statement about Gallia’s size, and no attempts are made to calculate it
in a more precise way — but probably the sailors are well trained in their
craft and are indeed able to estimate the equator’s circumference without much
error. According to [I5] ch. II/5], this circumference is 2300 km. As there is no
contrary data, I'll assume that Gallia’s shape is spherical, which implies that
it’s mean radius is then R = 366 km or as of [I2, ch. II/4, line 7547] about 15
of the Earth’s mean radius Rg = 6371 km; more precisely, it is R =~ 15_21.

This directly correlates with Verne’s mention of a more convex globe; by di-
minishing it’s diameter, the horizon gets drawn nearer. The situation is sketched
in Assume you're on a (perfect) sphere of radius » with your eyes at
height h over the ground (where h < r). Then the “horizon” is visible at a dis-
tance of d just where your line of sight is tangent to the sphere. By Pythagoras’
theorem, we find (r + h)? = r% + d? or

2
d=+h?+2hr= r(2h+]:ﬂ)%v2hr. (1)

So for a fixed “observation point” (i.e., fixed h), the distance d to the horizon
is proportional to +/r when changing the globe’s radius r. In [I5 ch. I/5], it is



claimed that for a certain point on the coast, the distance to the new horizon is
only 10 km where it had been 40 km before. I would probably not expect myself
to be able to estimate such distances more or less accurately “by sight”, but I
guess a French officer can.

The decrease by a factor of 4 = /16 fits in very well with the later statement
that the radius is reduced to % compared to the Earth. So Jules Verne was very
likely aware of this geometric relationship. Using with Earth’s mean
radius of Rg and d = 40 km, the height of this particular spot is h = 126 m; then
on Gallia, the correct distance using this height would have been d’ = 9.59 km

instead of 10km, or rather \/ﬁ = %17 than % of 40km — but this is clearly

only a rounding issue.

2.2 Gravity, Mass and Density

In the second part of the novel, driven by Palmyrin Rosette, Gallia’s inhabitants
measure the mass and density of their new home. This is done via finding the
changed value of gravity acceleration, which seems to be a very reasonable way
to do it. A test-mass of 1kg is weighed and the apparent mass displayed (which
is less than 1kg) in relation to the correct 1kg gives the new acceleration g on
Gallia as compared to gg = 9.81 7, because the attracting force is diminished
in that ratio and thus the weighing is influenced.

Of course, scales can not be used for this, because they only find the relative
mass of some object compared to known test-masses — and thus would still yield
the correct result independently of gravity (as long as it is not completely zero).
This is also explained by Jules Verne in [I2, ch. 1I/5, line 7763], so they venture
to use a spring-balance instead, because this device actually measures the real
force of attraction and is thus susceptible to a change in gravity acceleration.

Fortunately, they are able to get both the spring-balance and a test-mass
of exactly 1kg despite their somewhat isolated position. The apparent mass as
displayed by the balance is 133 g (see [I5, ch. II/8]), but note that the balance
is manipulated and displays 1 kg for actually only 750 g, which is found out later
[15, ch. II/16] — with this,

133g 3 m
g=4gE - Tke "1 —0.9882.

In theory, this value is given as sum of gravitational acceleration (inwards)
and acceleration due to centrifugal force (outwards). For mass M of Gallia and
rotational period T' = 12h, it is (positive means inward)

GM  A4r?
gzﬁfﬁ ) (2)

where the two terms correspond to gravitation and centrifugal force due to

Gallia’s rotation, respectively. With already known R, it is trivial to calculate
2

the second expression to TR =17.74-10"3 ?2 (less than 1% of the measured

total). Now, from [Equation 2| we can calculate Gallia’s mass according to the

measurement of g:

R dr2
M= <g+ ;R) — 1.98-10%' ke



This finally leads to a mean density of p = % = 9639 %, which is much
larger than that of the Earth (or any other planet).

So far my own analysis; in the book, they proceed a little different. After
having determined g with the test-mass, they measure the density of a particular
substance, of which all of Gallia’s surface seems to be made (unknown on Earth
or at least to any of them). A cube of 1dm?® of this substance weighs 1.43kg
on the spring-balance according to [I5, ch. II/8]. Considering the changes in
gravity and the wrong calibration, this results in a corrected mass of 10.752 kg or
a surface-density of p; = 10752 %. Note that in fact this value is independent of
the % correction they only find out later, so their result is immediately correct.

From this and the assumption that this substance “no doubt constitutes the
sole material of the comet, extending from its surface to its innermost depths”
[12] ch. II/7, line 8334] they calculate the mass as product of volume and density.
Although the surface-density is admittedly already very high and thus there’s
probably not much margin for a much heavier core in a differentiated body, this
still seems to be a very questionable assumption and practice. Especially as it
is completely unnecessary to make it at all, because the more direct method via
g itself would also have worked.

Anyways, here again the density from Verne’s stated values and that from
direct estimation of Gallia’s mass match up with not much more than 10 % of
error. So he clearly hit the correct numbers again.

Interestingly though, due to the indirect method of calculating Gallia’s mass
where the “correction factor” % of the wrongly calibrated balance does not
matter, they arrive at the correct result despite not knowing about their wrong
measurements (at least the same result as if they had already known and cared
about that factor) — so in some sense, they actually did it the right way,
although they could not have expected this problem. However, they later only
find out about the wrong balance (partly) because Rosette’s observations of
Nerina (a satellite of Gallia) don’t match up with his calculations, where he
blames a wrong value for Gallia’s mass (see [12, ch. 1I/14, line 10424]) — but
even though the spring-balance displayed wrong weights, their estimated mass
was already correct. This is apparently something that Jules Verne messed up
because he didn’t think about it in depth.

2.3 Valuable Soil

After the calculation of Gallia’s density, Rosette comes to the bold proposition
that the “strange substance” that makes up Gallia’s soil “contains 70 per cent.
of tellurium, and 30 per cent. of gold” (see [12] ch. II/7, line 8417] or [I5] ch.
I1/8]) — because “the sum of the specific gravities of these two substances is 10,
precisely the number that represents Gallia’s density” (if using Verne’s rounded
numbers, the mean density is “about” 10 E3).

According to [I], the densities of those two substances are pa, = 19.32 cri?’
and pre = 6.25 5. It is not clear whether the percentages given are fractions
of Gallia’s volume or mass — let’s first assume those are volume-parts. Then
some volume V' of Gallia’s soil consists of 0.3V gold and 0.7V tellurium, so its
mass is m =V - (0.3pay + 0.7p1.) which gives a mean density of

K
ol = 0.3pau + 0.7pre = 10171 —.
m



This value fits well into the picture, as it is near the cited “10” and also just
between the two densities found above from the gravity and surface substance.
Additionally, the nice formula as weighted mean of the two densities just matches
Verne’s description.

If on the other hand the fractions are parts of the mass, a piece of the

substance with mass m contains 0.3m gold and 0.7m tellurium. The respective

;?T3 + ST?) so in this case the overall density is rather the

harmonic mean, namely

03 07\ ! k
Phass = ( + ) — 7841 5.
PAu PTe m

volume is V =m - (

This value clearly is out of range, so Jules Verne obviously meant percent of
volume — as was already suspected above.

It is however also curious that Rosette seems to decide about the substance
“Jjust” because of its density, especially with inexact, rounded numbers — I
should try selling a mixture of lead and iron with exactly silver’s density to my
local jeweler, maybe this will work out. But possibly Rosette already knew the
substance from other reasons and was only ensured about its nature and exact
mixture by the measurement result.



3 Gallian Atmosphere

Gallia does obviously possess an atmosphere that is suited to support life, be-
cause otherwise Verne’s characters would have been in quite a dire situation. It
probably took away a part of the Earth’s during the collision (see for instance
12, ch. I/15, line 3436] and [12] ch. II/12, line 9618]), so I will assume that
its composition is similar to the Earth’s atmosphere with the same amount of
oxygen and the same molar mass.

Verne mentions in the book at certain places (first at [12], ch. 1/5, line 731])
that breathing has become more difficult and the atmospheric pressure is much
less than that of the Earth — but still only to the extent that it forms no real
physical problem for anyone on Gallia.

In this section, I’ll estimate the surface pressure of Gallia from the statements
given in the book, and see if this is a reasonably possible value or not; note that
Gallia is much smaller and has a much weaker gravity than the Earth according

to Section 2

3.1 Surface Pressure

While Jules Verne mentions in his novel that Gallia’s surface pressure is much
lower than the Earth’s, no explicit value (or ratio between those two) is given
(only the in my opinion useless comment “that the column of air above the
Earth’s surface had become reduced by one-third of its altitude” in [12, ch. 1/7,
line 1339]). However, according to [I5, ch. I/7] and [12 ch. I/7, line 1327],
the boiling temperature of water is reduced from the “usual” 100°C at one
atmospheric pressure on Earth to 66 °C — this corresponds to a significantly
reduced pressure, according to [I5] ch. I/7] the same as on a mountain 11km
high on Earth.

From those two statements, we can arrive at an explicit value of Gallia’s
atmospheric pressure. To be precise, those observations are made not at surface-
level but on top of a cliff at the former Algerian coast; so maybe some 100 m or
200m above the sea. However, because that is in any case only an insignificant
fraction of the barometric scale height on Gallia (as seen in [Section 3.2)), it is
surely justified to identify the pressure there with the real surface pressure in
good approximation.

Water begins to boil when the outer pressure equals the saturation pressure
at its temperature, so Gallia’s surface pressure is the saturation pressure at
66 °C. The saturation pressure is given by the Clausis-Clapeyron equation (see

I8, p. 186]): o
eo(T) = eso - €xp (R“; (T - T)) , 3)

where e, is the saturation pressure at temperature Ty as reference-point, R,, is
the specific gas constant for water vapour and [, is water’s evaporation enthalpy.
Unfortunately, is only valid approximately in this form because the
temperature-dependence of [, has been neglected; but for a small temperature
range it is a good approximation.

[7] is a table of saturation pressure values, which does not give es(66°C)



directly but instead we find

€5(64.053°C) = 240hPa
€s(67.518°C) = 280hPa.

With the help of we can interpolate between those values. Solving

for Il%'—“’w, we obtain

o _ o (es(D) 1 1\ !

— = ]n . _—

R, €50 To T ’
which can now be calculated for the temperature range about 66 °C using the
data points from the table. Having this at hand, it is easy to find

po = €5(66°C) = 262 hPa

as surface pressure of Gallia from I will use this value later on (as
opposed to other possibilities explored below).

As for the pressure 11km above the surface of the Earth (which is the sec-
ond statement made by Jules Verne), the “classical” barometric formula for an
isothermic atmosphere (see [8 p. 164]),

()_ Z— 20
p(2) = po - exp T )

with temperature of 0°C results in p; = 256 hPa, which is quite close to the
pressure pg. However, in reality the atmosphere is not isothermic of course; and
the table at [8, p. 166] gives the correct pressure at this height as ps = 226 hPa.

But at Jules Verne’s time, probably no really useful measurements about
temperature and pressure in those strata of the atmosphere were known; and so
I think both boiling temperature and height corresponding to the same pressure
can be seen as matching up with the precision that can be expected.

Note that in any case, the pressure is far too low to support human life for a
longer time; so unless we assume that oxygen makes up a larger fraction of the
Gallian air than it does here on Earth (but there’s no statement in the book
to really support this supposition), the value given is unrealistically low from a
biological point of view. But we’ll see later on that it is also unrealistically high
from a physical point of view nevertheless. So it may be a good compromise
from a fictional point of view as it is.

At [I2, ch. I/7, line 1309], Jules Verne describes that Captain Servadac is
curious whether a fire will burn in the rarefied air, but notices later that it does
indeed without any problems — this may be interpreted as a hint for a higher
amount of oxygen, but I think that is fairly far-stretched and thus stick with
the assumption that the composition of the air has not changed.

3.2 Barometric Height vs. Stationary Orbit

The scale height used in the classical barometric formula is given as

_RT
g

H



according to [8, p. 164], where R is the specific gas constant (as opposed to
Gallia’s radius!), T the temperature (assumed to be constant at all heights) and
g the gravitational acceleration.

R and T being the same as for the Earth, it is clear that because of dimin-
ished gravity according to the scale height of Gallia will be much
larger, namely around 80 km instead of 8 km. This implies that the Gallian at-
mosphere is “thicker” in some sense (even though the surface pressure is lower).

On the other hand, due to Gallia’s faster rotation and also diminished mass
the galliastationary orbit is much nearer to the surface as is the geostation-
ary one (the exact altitude can be found by setting [Equation 2| to zero (and
subtracting the planet’s radius of course) — it is 1500 km as compared to the
geostationary orbit’s altitude of 36000 km).

Taking those two effects together, the question comes to mind what happens
when the atmosphere extends up to the galliastationary orbit where the gravity
vanishes; obviously, there must not be any hydrostatic pressure there, because
no force could counteract it and the gas would be free to escape under its
influence.

Of course, there are two important points to take into account: First, the
atmosphere does not have any “hard” boundary, but rather the pressure de-
creases ad infinitum and becomes so small that the whole statistical concept of
“pressure” does not make sense anymore above a certain height. I'll consider
the above statement in more detail later, but nevertheless it should be quite
clear that this height must in any case be well below the stationary orbit.

Second, the gravity from [Equation 2|of course only applies if the atmosphere
is assumed to precisely follow Gallia’s rotation. But below Gallia’s exosphere
were the pressure has vanished mostly and instead we have to consider individual
gas particles, this assumption seems to be fulfilled; as of [12, ch. II/4, line 7309],
during the Gallian winter there’s a “complete stillness of the atmosphere” which
would be disturbed in case of relative rotation between Gallia’s surface and some
parts of the atmosphere.

In order to work this out more precisely, let’s derive a barometric formula
which takes into account the dependence g(z) of the gravity acceleration on the
height z according to The differential equation that characterizes
the pressure p as function of height is (according to [8, p. 164], with ® = gz)

dp _ 90 (4)
dz RT
When we consider T' as constant but accept a dependence g(z), [Equation 4
can be solved by separation of variables and the solution is the generalized
barometric formula:

92 = exp (-7 [ at6) dc) o)

In this equation, pg is Gallia’s surface pressure and z is the height above ground
(as opposed to the distance from Gallia’s center of gravity!).
Integration of g({) is easy (albeit the result is somewhat lengthy); using 7

for the rotation period (because the T from [Equation 2|is already used for the
temperature here) and Rq for Gallia’s radius, [Equation 2| becomes
GM 42

2 ?(RG + C)

10" e+ er

10
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Figure 2: Pressure p(z) according to the generalized barometric formula in

for the Earth and Gallia.

Then the definite integral is

? GM 1 472 22
| o ac= (1 1+Rz> g (RG2+ 2),
which completes the barometric formula in [Equation 5|

The pressure p(z) from is plotted for the Earth and for Gallia on
a logarithmic scale in One can clearly see that the pressure has a min-
imum at the stationary orbit and then increases again faster than exponentially,
going to infinity at far distances. This corresponds to the informal statement
above that the atmosphere must “end” well below the stationary orbit.

I assumed an isothermic atmosphere with 7" = 0°C for those calculations,
but the qualitative result is not much changed for other temperatures. For
Gallia, the minimum pressure is about 10.2 hPa; this is still quite a large value
and so the way Verne depicts it, the atmosphere can never be stable.

Of course, we can play the same game for the Earth. Mathematically,
holds all the same; so why has the Earth still an atmosphere? If you
consider [Figure 2} the Earth’s curve goes nearly exponentially down very steeply
(which corresponds to the classical barometric formula); and the pressure at the
geostationary orbit is 1.5 - 107266 hPa, which is small beyond all imagination.
Thus for the Earth, while mathematically correct, loses significance
well before this height is reached because the pressure becomes so small that

all theory of ideal gases that forms the foundation of is not working
any longer.
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3.3 Thermal Flight

Besides the consideration in another concept that prohibits small
bodies from holding a dense atmosphere is that of thermal flight; see [8 p. 625f].
The idea is that gas particles whose thermal movement exceeds the escape speed
can leave the body’s gravitational force-field and are lost. Note that in this
section, I will always consider only Gallia’s gravitational force and neglect the
centrifugal component. So here the assumption that the atmosphere takes part
in Gallia’s rotation is not made; taking this into consideration would make the
resulting effects even more severe.

In the case of Gallia, we first have to calculate the escape speed. It is the
speed v, such that a particle’s kinetic energy equals the potential difference to
infinity; in other words, for the escape speed v, the following equation holds:

mv,  GMm

2 T

This can easily be solved for v, and gives the escape speed as

which can also be found at [8], p. 625]. At surface-level on Gallia, vo, = 850 2.
Clearly, this is significantly lower than the value of 11200 } on Earth.

At temperature T', the mean thermal energy of a gas particle is given by
%kT [8) p. 626]; if the corresponding speed is larger than v.,, those particles
can escape. This is equivalent to the condition

M
ng _ GMm

r

which gives the critical minimum temperature for this to happen as

2GMm
ng kr -~ Q

If the actual gas temperature is at least that large, blow-off happens, which is
quite an effective way to get rid of the atmosphere according to [8, p. 626].

The critical temperature from depends on the particle’s mass m,
and thus is different for the distinct gas components forming the atmosphere.
In the blow-off temperature is given for the Gallian atmosphere at
different heights above the ground and for different gases. Depending on which
temperature Gallia’s exosphere is assumed to be at, some gas components are
clearly volatile and can not be hold by Gallia’s weak gravitation; but at least
the heavier gases may not be susceptible to blow-off.

The actual speeds of gas particles at a certain thermodynamic temperature
follow the Maxwell-Boltzmann distribution. According to [14], the correspond-
ing cumulative distribution function is given as

F(v) = erf(\/g ,3) - \/z\/g-vexp (_%) .

Thus the critical fraction of gas particles that can escape because their speed
is larger than v, is

fe=1—F(vs). (8)

12



Scale-Heights above Ground

Gas Molar Mass 0 1 5 10 | f,at T=0°C
Hy 2 58K 48K 28K 18K 88.8%
H,O 18 521K 428 K 249K 163K 12.6 %
No 28 811K 665K 387K 254K 31%
02 32 926 K 790K 442K 290K 1.7%
Ar 40 118K 950K 553K 363K 0.5%
COs 44 1274K  1045K 608K 399K 0.3%

Table 1: Escape characteristics of different gases in the Gallian atmosphere

based on [Equation 7] and [Equation §|

Taking [Equation 6| and [Equation 8| together, the fractions in are found.
While the heavier gases have rather low fractions, they are also clearly distinct
from zero and thus even those will gradually escape.

Overall, the numbers in indicate that also from the point of view of
thermal flight, Gallia’s atmosphere is not stable and can not exist in the way as
described by Jules Verne. The only possibility is that flight is rather slow and
the atmosphere can survive at least over the two years it has to for the story,

even though it gets thinner during that time.

13




Figure 3: Elliptical orbit with semi-axes and perihelion / aphelion.

4 Gallia’s Orbit

It is well known that the mechanics of the planets (and other bodies, in particular
Gallia) revolving around the Sun can be very well approximated by movement
of those bodies within the Sun’s gravitational force-field (because the Sun’s
mass is much larger than that of any of the planets, and especially Gallia, we
can assume the field to be constant and consider just Gallia moving within it
without disturbing it). Neglecting the influences of planets onto each other is
also (usually) justified for approximative models (and I will do so).

Under these assumptions, possible trajectories are conic sections — ellipses
(including circles as special case) for negative total energy, parabolas and hy-
perbolas for non-negative energy. According to [12] ch. 1I/3, line 7229], in the
case of Gallia it is an ellipse.

4.1 Perihelion and Aphelion

Gallia reaches its perihelion on Jan, 15th, 1 (according to [15, ch. I/15]). It
is somewhere inside of Venus’ orbit, but the exact position is never stated.
The aphelion however is specified as 220 - 1061 and reached on Jan, 15th, 2
[15, ch. II/13]. Additionally, the orbit’s circumference is given as “little over”
U = 630-10°1 as of [I5 ch. II/11].

Let ¢ and d be the aphelion and perihelion distances for Gallia’s elliptical
orbit, let a and b denote the major and minor semi-axes and let e (with a? =
b% 4 €% according to Pythagoras) be the linear eccentricity. Then (as illustrated

by [Figure 3|) those values are related by

c+d = 2a
{ c = a-+te. 9)
Thus when given the perihelion and aphelion distances as d and ¢, we can
find the elliptical orbit’s axes according to IEquation 9as a = #, e =c—aand

b = va? — e2. Unfortunately, we have to deal with the ellipse’s circumference
(because this is a piece of data given in the book) which is a quantity that
can not be written in closed form as expression of @ and b (and thus perihelion
and aphelion distances) — but there exist approximation formulas that can
be applied to calculate the circumference with much better precision than the
round number given anyways, so this is no practical problem.

Clearly, the unknown perihelion distance has to be a number between zero
and the aphelion. Assuming “near” zero, the orbit would degenerate to a line
and thus the circumference would be twice the aphelion distance in this case,
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namely U; = 440 - 101 which is less than the known circumference. For the
other extreme, a circular orbit with a = b = ¢ = d, the circumference would
be Uy = 21 - ¢ = 1382 - 10%1 which is too large. Because the circumference as
function of perihelion distance is obviously continuous and strictly increasing,
it follows by the intermediate value theorem that there’s a uniquely defined
perihelion distance in-between those two boundaries that matches Jules Verne’s
circumference U — this can, for instance, be calculated numerically via an
interval bisection approach. This gives the perihelion distance as

d=25.5-10°1=0.68 AU = 0.94 x mean distance Venus — Sun,

which is a very reasonable value and matches with the qualitative description
in the book, namely that it is somewhere little inside Venus’ orbit. As already
discussed above, the axes a and b of Gallia’s orbit follow then directly, which
means that its geometry is now fully known. Namely,

- C;‘1:123-1061

b = Va2—(c—a)2="75-10°1L

4.2 TImpossible Schedule

Kepler’s third law establishes a connection between size of a planetary orbit
(in particular its major semi-axis a) and the corresponding period duration T,
which is (see [4 p. 88])

2 2
= (10)
a GM
where M is the Sun’s mass; the planet’s mass is (as before) neglected in respect
to it. Of course, this relation has to be fulfilled by Gallia, too.

In this case, we already know a = 123-10°1 and the orbital period is specified
as T = 2a (exactly two terrestrial years) — see [12), ch. II/3, line 7244] or [I5]
ch. II/4]. Unfortunately, these two values clearly do not satisfy
not even approximately.

While Kepler’s third law is not mentioned explicitly in the book (like the
second law and in some sense also the first is), this is something I expect Verne
to know about without any doubt. My interpretation is that he wanted a large
orbit so as to bring Gallia’s population deeper into space while he did not want
them to be as long in the cold outer regions during their travelings as they must
necessarily be for his planned orbital size.

Solving for either T or a allows us to find the “correct” period
or semi-axis for the stated orbit or two years’ journey, respectively. Insisting on
T = 2a, we find

3 GM 6
={/T?2—= =59-10°1
“ 472

and further for this orbit — assuming the perihelion is unchanged — that its
aphelion must be ¢ = 93 - 10°1 = 2.49 AU from the Sun. This is just beyond
Mars’ orbit instead of Jupiter’s.

On the other hand, assuming that the proper orbit as stated in the book was
more important to Jules Verne than his claimed period, the correct duration of
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Earth ——
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Venus
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Gallia Period

Figure 4: Gallian orbit possibilities compared to planets. Units are AU.

the Gallians’ journey is

_ o Jas i _
T =\1/a i 5.96 a,

which is much longer than his two years. My opinion is that this second version
is probably what Verne had in mind; for later analysis, I assume that his stated
distances are correct but the time must be scaled by a factor of (nearly) 3 to
match up — that is, I will divide the theoretically correct time scale by this
factor in order to get results comparable to the stated values; i.e., for a full
orbit the time-axis should actually cover months 0-6 - 12, but I will scale it
down so that the full orbit takes place in the months 0-2 - 12 only and use
Verne’s original value-time pairs as comparison.

schematically depicts the orbits of the five innermost planets (up to
Jupiter) together with the two possibilities of Gallia’s orbit. This plot reflects
what we already found out, namely that Gallia’s perihelion lies just within
Venus’ orbit and that — while the stated aphelion is outside of Jupiter’s — the
one matching a two year period is only beyond Mars’.

4.3 Distance from Sun

Gallia’s orbit is the solution to the classical Kepler problem, i.e., movement
within the Sun’s gravitational force-field with potential given as V (r) = 7%.
This problem is very well analyzed in general and discussed, for instance,

in [, p. 83ff]; note that the potential there is expressed more generally as
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Vr)= —% so that in our case k = GMm. The trajectory in polar coordinates
(r, ) is given as

D
r(¢) = [Rr—; (11)
with the two constants
L\? 1
Po= (m> oM
2 HE(L)??
m\m/) G2M?’

where E is the total energy of Gallia (kinetic and in the gravitational potential)
and L is its (orbital) angular momentum, both of which are conserved quantities
during orbital movement.

When we choose the ¢ = 0 axis of the polar coordinates accordingly and
know the aphelion and perihelion distances ¢ and d of the orbit, we can calculate
p and € by solving the linear system

p—d-e = d
p+c-e = c

that stems from for ¢ = 0 and ¢ = 7, respectively. Note that €

is also the numerical eccentricity of the orbit’s ellipse and € = £ holds for the

linear eccentricity e and the major semi-axis a that could be found differently

from perihelion and aphelion (based on [Equation 9).

If we want not only the curve but also r(t) and ¢(t) as functions of time, we
can consider the differential equation

mrip =L (12)
(see [, p. 67]) or equivalently
. L 1
TR

By choosing, for instance, ¢(0) = 0, we arrive at an initial value problem
that can be integrated numerically to find ¢(¢) and then by [Equation 11{r(¢), if
only the constant % is known. This quantity can be found from p which in turn
is known from the orbit specification with perihelion and aphelion distances.

Alternatively, consider In the form

L 9 dA

— =rp=2— 13

SEre=2— (13)
this is just Kepler’s second law about equal areas and if we integrate the equation
over one orbit we get the full ellipse’s area on the right-hand side:

L
— T =2mab
m

The orbital period T' is known from Kepler’s third law (and was already
calculated), so we find for the unknown constant:
L 2mab

m T

(14)
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Date Distance At Planet Reference

Jan, 1st, 1 Earth 15, ch. II/2] 12 ch. II/2, line 6849]
Jan, 10th, 1 Venus | [I5, ch. 11/4]  [12} ch. II/3, line 7146]
Jan, 20th, 1 Venus 12}, ch. 1/8, line 1767]
Feb, 1st, 1 Earth 15, ch. 11/4] 12| ch. II/3, line 7148]
Feb, 13th, 1 Mars 15l ch. 11/4] 12 ch. 11/3, line 7149]

|

|

|

[ [

[ [

Feb, 15th, 1 591061 [ [
Mar, 1st, 1 781061 [15, ch. 1/17]  [12] ch. 1/17, line 4213]

Apr, 30th, 1 | 110-10°1 [15 ch. 11/5 [

[ [

[ [

[ [

[ |

|

]
May, 31st, 1 | 139-1061 15l ch. 11/5] 12}, ch. II/4, line 7405
Jun, 30st, 1 155-10°1 15l ch. 11/5] 12 ch. 11/4, line 7501
Jul, 31st, 1| 1721001 15, ch. 11/6]  [12} ch. II/5, line 7720
Aug, 31st, 1 | 197-10°1 15l ch. 11/9] 12, ch. II/8, line 8461
Sep, 1st, 1 Jupiter 12}, ch. II/8, line 8607
Dec, 15th, 1 | 216-10°1 [15] ch. 11/11]
Jan, 15th, 2 | 220-1061 [5, ch. I1/13] [12, ch. II/12, line 9806]
Jun, 1st, 2 | 1971001 [15, ch. 11/14] [12} ch. II/13, line 10028]
Nov, 30th, 2 | 78-10°1 [15, ch. 1I/17]  [12} ch. II/16, line 11127]
Dec, 15th, 2 Mars [I5, ch. IT/17]  [12 ch. II/16, line 11180]
Dec, 31st, 2 40 - 1061 [15] ch. 11/18]
Jan, 1st, 3 Earth

12 ch. 1/15, line 3649]

12}, ch. II/4, line 7379]

Table 2: Gallia’s distances from Sun as claimed by Jules Verne.

These results enable us to calculate the theoretical orbit, most notably the
distances from the Sun r(¢) as function of time, for Gallia (assuming the peri-
helion and aphelion determined in .

On the other hand, Jules Verne also makes a lot of statements about Gallia’s
distance from the Sun at certain dates. It is not always perfectly clear to which
exact day some distances belong, but I think in all cases it can be inferred
quite unambiguously. Sometimes instead of a distance the position relates to a
planetary orbit (like “Gallia crossed the orbit of Mars”), in which case I assumed
it to be the mean distance of that planet from the Sun. Those claimed distances
are summarized in [Table 21

It is evident that the distances from Sun are “symmetrical” in the sense that
time ¢ before reaching the aphelion they are the same as t after reaching it. In
I compare Verne’s claimed values, his values when mirrored around
the aphelion in this way and the theoretical curve (with time scaled to match
his two year period). While he hit the correct curve near the perihelion and
aphelion quite well, the values in-between are notably off; they seem to nearly
follow a straight line, so maybe he did interpolate linearly there (but that’s only
a guess). On the other hand, he was clearly aware of the temporal symmetry
aspect. Actually, consulting [Table 2] one finds that some stated values are given
identically at dates that are symmetric around the aphelion on Jan, 15th, 2.
For instance, the orbit of Mars was crossed one month after as well as one
month before the perihelion; the distance of 78-10%1 from Sun reached one and
a half month after as well as before the perihelion. Verne seemed to calculate
in months, though, and some minor differences in the plot can be explained by
different lengths of months when using days or seconds based on the calendar.
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Figure 5: Gallia’s distance from Sun as stated and calculated.

4.4 Orbital Speed

In addition to the distances of Gallia from the Sun, it is interesting to consider
the orbital speed at different times. It is clear that the speed is higher near the
perihelion and smaller near the aphelion.

For Gallia’s movement, the total energy F is conserved, and from

we get the relation

2L E(LY 2
€= m\m/) G?M?

which results in

E_ 62_1G2M2 (L>2.

m 2 m

Therefore, because the orbit’s eccentricity € is known from statements in the
book and also the constant % can be calculated from them (e.g., [Equation 14
or [Section 4.3|in general), we can consider % as known quantity.

However, the energy is also given as sum of kinetic and potential energy,
namely

2 2
mu muv GMm
EFE=—+4V(r)=——-— .
2 (r) 2 r
Because E and also % is constant (does not depend on the current distance r

from the Sun) and only the orbital speed v changes for different r, this equation
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Interval Advance Reference
Jan, 1st — Jan, 31st, 1 ? 82-10°1 | [15, ch. 1/15]  [I2 ch. I/15, line 3581
Feb, 1st — Feb, 29th, 1 ? | 591061 | [15, ch. I/17]  [12 ch. I/17, line 4214
Apr, 1st — Apr, 30th, 1 39-10°1 | [15, ch. I1/5) 12 ch. II/4, line 7378
May, 1st — May, 31st, 1 30.4- 1061 | [15] ch. II/5] 12, ch. I1/4, line 7404
Jun, 1st — Jun, 30th, 1 27.5-1091 | [I5, ch. 11/5]  [12| ch. II/4, line 7501
Jul, 1st — Jul, 31st, 1 22-10°1 | [I5, ch. 11/6]  [12} ch. II/5, line 7720
Aug, 1st — Aug, 31st, 1 16.5- 1061 | [I5, ch. I11/9]  [12 ch. II/8, line 8461
Sep, 1st, 1 — Jan, 15th, 2 81-10°1 | [15, ch. I1/9) [12, ch. II/8, line 8463]
Dec, 1st — Dec, 31th, 1 ? [ 11.5-10%1 | [15 ch. 11/11] [12} ch. II/10, line 9094]
Jul, 1st — Aug, 31st, 2 164 -10°1 | [15, ch. 11/14] [12, ch. 1I/13, line 10055]
Nov, 1st — Nov, 30th, 2 59-10°1 | [I5, ch. I1/17]

Table 3: Gallian advance during certain time intervals. Both dates are meant
inclusively, so the duration of one such interval is one day longer than the
difference of end- and start-date.

gives us the relation v(r) between distance r and orbital speed at that distance:

o) = f2( £+ 2 (15)

m r

Putting [Equation 15| and the numerical solution for r(¢) from [Section 4.3

together gives the theoretically expected orbital speed v(t) for all times during
the journey.

In the book, there are no really explicit statements about the orbital speed
(except for few positions, not relating to Gallia’s speed changing with distance
from Sun). But there are figures about how far Gallia advances along its orbit
during a certain interval of time, like a specified month; with those values, it
is at least possible to find a mean speed during that interval, which can still
be compared to the theoretical value. This is summarized in but once
again the dates are often ambiguously stated and I've marked some intervals as
“not sure” there with question marks.

As with the distances from Sun, the speeds should also be symmetric in time
around the aphelion. shows a comparison of theoretical prediction with
mean speeds calculated from this data as well as the same values mirrored in
time. The theoretical curve is scaled in time as to fit into 24 months. In addition,
the plot contains the “correct” speeds as of for the distances from
Sun claimed by Jules Verne (see [Table 2)).

As before, Verne did not predict the curve precisely — he did reflect the fact
that the distance decreases towards the aphelion qualitatively correct, though.
In the middle parts, as with the position his values do not follow the curve but
rather “cut it short”. However, in relation to the stated positions, his speed
predictions are more or less accurate (so the wrong speed there may be due
to his earlier errors in position), and near the orbit’s extremal points, he even
got it quantitatively right — especially the speed at Gallia’s aphelion is correct
with a very good precision! Taking into account that the value plotted is only
the mean over a full month, the same is also true for the speed at the very
beginning.
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Figure 6: Theoretical and claimed orbital speeds. “Error-bars” mark the time
interval over which the speed represents the mean.
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Figure 7: Relative position after one sidereal day.

Unfortunately, here he still seemed not to take that much care about his
numbers over all; the statement about Sep, 1st, 1 — Jan, 15th, 2 is quite out of
order, and the stated travel distance of 164 - 1061 between Jul, 1st — Aug, 31st,
2 is obviously tremendously wrong (which is clearly visible in t00).

4.5 Day-Length Differences

An interesting phenomenon for inhabitants of a body that revolves in an eccen-
tric orbit around the Sun (just as Gallia does) rather than an almost circular is
that by Kepler’s second law the angular orbital speed is lower near the aphelion
and higher near the perihelion while the body’s own rotation stays (except for
changes in the momentum of inertia) constant — this means that while the
sidereal day-length is of course fixed (conservation of angular momentum), the
synodical days vary in length over the course of one year.

Gallia’s rotation is retrograde, but according to [12] ch. II/3, line 7046] also
Gallia’s orbital movement was retrograde before the collision with the Earth; I
think it’s reasonable to assume thus that its later movement is also retrograde,
so that it is of the same orientation as Gallia’s rotation (if it is not, then all
day-length differences have opposite sign to my results later on, but otherwise
it stays the same).

Thus during the course of one sidereal rotation (that is, exactly 360° around
its own axis) it has already moved a little along its orbit, so that some further
rotation is needed to align it in the same position relative to the Sun — a
synodical day is slightly longer than a sidereal, and the difference depends on
the angle traversed on its orbit during one sidereal rotation (which has a fixed
length all the time; within less than a percent of precision it can be approximated
by the day-length stated in the book of T'= 12 h that is probably the synodical
length near Gallia’s perihelion). This situation is sketched in the angle
« is the angular change in orbital position during one sidereal day.

So during one synodical day, Gallia has to rotate 360° 4+« in order to compen-
sate for this, and thus the difference between synodical and sidereal day-length
will be

AT =2

=5 T (16)
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Figure 8: Difference between synodical and sidereal days during Gallian year.
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neglecting the small distance Gallia advances further on the orbit during that
time, too.
According to the time-derivative of Gallia’s angular position is

d(r) = L1 and so a(r) & £4 . T. We already calculated the distance from

Sun r(t) along Gallia’s journey in so with we can now
find the day-length difference AT (t) (compared to Gallia’s sidereal day) over
the course of its orbit, which is plotted in

We see that the synodical days (as experienced by the Gallians between two
sunrises) differ in length more than 2min between the perihelion and a few
months after that event. This effect is never explicitly mentioned in the book
and should probably be noticeable with careful observation, but I believe that it
could as well also be missed easily, so do not blame Jules Verne or his characters
for not mentioning or even observing it.

4.6 Geometry at Odds

When combining the data given in[Table 2]and [Table 3}, one finds that Verne has
given some triplets of distance from Sun at time ¢, traveled from ¢; to ¢ and
distance at time t5. The traveled distance corresponds to an elliptical arc, and
together with the two distances from the Sun it forms a nearly triangular shape
(at least in good approximation if the time interval is rather short compared to
one full orbit).

From Kepler’s second law (or more precisely, [Equation 13)) we know that
its area should be proportional to the time interval t; — t1, and that we can
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From To | Distance 1 Traveled Distance 2 %
Jan, 1st Jan, 31st, 1 1AU 82-10°1 1AU

Feb, 1st Feb, 29th, 1 1AU  59-10°1 781091 | 1.4-10'6
May, 1st May, 31st, 1 110-10%1 30.4-1061 139-10°1 | 0.7-10'6 m—z
Jun, 1st Jun, 30th, 1 139-10%1 27.5-1061 155-10°1 | 2.0-10'6 mi
Jul, 1st Jul, 31st, 1 155-1061 221091 172-1061 | 1.4-10'6 m—
Aug, 1st Aug, 31st, 1 172-10%1 16.5-1061 1971091

Sep, 1st, 1 Jan, 15th, 2 197 - 1061 81-10°1 220-10°1 | 2.1-10'6 m—

Table 4: % via approximate triangle areas.

calculate the conserved quantity # that is characteristic to Gallia’s orbit from
the area corresponding to a given time.

When we approximate the shape with a triangle, we know all three of its sides
a, b and c as the two distances from Sun and the distance traveled in-between;
then with Heron’s formula, the triangle’s area is given as

A=/s(s—a)(s—b)(s—c)

where s = # is the triangle’s semi-perimeter.

With this, the corresponding values of # for each possible triplet are given
in Note that the dates corresponding to distances in are not
given very exactly, so we have to allow for them to vary up to one day, and
especially it is most of the time not clear whether a distance corresponds to the
last day of a month or the first of the following.

It is easy to see that also this point of view shows that Verne was not very
careful with speed numbers (because “correctly”, all 7% values should be the
same — but at least some match quite good). However, in two cases (the ones
where no % is given) his statements violate even the triangle inequality! In the
very first row, 1 AU = 37.5-10°1 and thus 2 AU < 82-10°1 which means that the
claimed numbers can not possibly be correct, because when traveling 82 - 1061
from a position 1 AU from the Sun, Gallia must in any case end up more than
1 AU distant from it. But as I marked this travel-interval as unclear in
this may also result from an incorrectly extracted number.

In the second case however, the statements in the book are quite clear. And
here again, when Gallia only travels 16.5 - 1061 during the month of August, it
can at most end up being 188.5 - 10°1 from the Sun at the end, as compared to
the stated 197 - 10°1!

This is of course something that is clear just with common sense and without
anything related to “physics”, so Jules Verne seemed to have given not much
thought and effort to those numbers... Or it is a typographic error, because
there are also some inconsistencies between [15] and [12] (although the unit is
the same in the translation in those cases, so this is not related to incorrect
conversion) and even within one text where a number is given twice (see [15]
ch. 1/15] where the traveled distance is both stated as 32 -10°1 and 82 - 10°1).
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5 Temperature Modeling

While Gallia’s axis of rotation is not inclined with respect to its orbital plane
and hence there are no seasons in the classical sense on Gallia, because of its very
eccentric elliptical orbit there are obviously strong temperature differences over
the course of one Gallian year. Near the perihelion, Gallia is less than 1 AU
distant from the Sun and receives thus more light and heat than the Earth
(about as much as Venus does), but near the aphelion it is considerably less at
more than 5 AU distance.

This is also a motive addressed in the book, and in order to escape the cold
during what Verne calls the “Gallian winter”, the inhabitants find shelter near
an active volcano. Jules Verne again has a lot of explicit temperature values in
the book, and in this section I will use a (very simple) model to check those.

5.1 Radiation Intensity

While radioactive decay produces heat to some degree on the Earth (and other
planets as well of course), the by far most important source of heat (and energy
in general) is absorption of the Sun’s radiation.

The same is evidently true for Gallia — so as a first step, we have to consider
in what relation this quantity is to Gallia’s distance from the Sun. Because the
amount of radiation that passes through concentric spheres erected around the
Sun’s center must always be the same (corresponding to the luminosity of the
Sun) regardless of the sphere’s radius, the radiation intensity must be inversely
proportional to r? (where 7 is the distance from the Sun) because the spheres’
surface areas increase in that proportion.

The power of radiation passing through 1 m? orthogonal to the rays at 1 AU
distance is also referred to as the solar constant S. The actual value of S is
changing with solar activity, but I will not use it later on anyways.

More important is that the “solar constant” S(r) for a different distance is
(by the above consideration) given as

S(r)=—= -5 (17)

with Sy being a “reference value” at distance rg, e.g., Sy = S and ro = 1 AU.

According to [12, ch. II/8, line 8552], “the amount of light and heat re-
ceived” by Jupiter is only % of that received by the Earth — with Jupiter’s
average distance from the Sun being very roughly 5AU. This fits perfectly
with so Jules Verne clearly knew about the correct relation in this
respect.

5.2 Radiation Balance

A very simple method to model the mean temperature of Gallia as a whole is by
considering input and output flux of heat; see also [8, p. 463ff]. Because space
surrounding Gallia is of course non-conducting, the only way this can happen
is via absorption and emission of radiation.

The incoming radiation is given via the solar constant and the area Gallia
covers when seen from the Sun — this is a circle with the same radius R as
Gallia. Not all of this radiation is absorbed, however, because a certain part is
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immediately reflected. This fraction is called the albedo A. Thus, the incoming
heat is given by:
Qin=(1—A)-S(r) TR (18)

On the other hand, by the Stefan-Boltzmann law Gallia also emits heat in
form of infrared light itself, depending on its temperature and over all its sur-
face area. We also have to consider the greenhouse-effect, namely that Gallia’s
atmosphere — probably similar to the Earth’s — does in turn absorb a certain
part of this radiation and re-emits it back to the surface. Let ¢ be Gallia’s
emissivity as a “black body” and 7 the fraction of heat radiation that actually
escapes through the atmosphere. Then the emitted heat at temperature T is

Qout = ATR? - eTo - T, (19)

Note that without the Stefan-Boltzmann law it would not be clear how to
join the concepts of Gallian surface temperature and radiation received from
the Sun! This plays an essential role here, but was not yet known at the time
when Jules Verne published his novel.

If we neglect all further flows of heat and want to find the equilibrium tem-
perature at a certain distance r from the Sun, those two flows must equal each
other: Qin = Qout- Taking [Equation 18| and [Equation 19| together and solving
for T, this gives

1-A

deto’

T(r) = /S(r)

(20)

where ﬁ as well as the solar constant are still unknown (they could be esti-
mated based on the descriptions in the book, but this would probably be only
correct to some degree).

If we use for some reference point at distance rq with known
equilibrium temperature Ty and take into consideration, we can

get rid of those unknowns:

2
e 1-A [T
= —S . — —T
) 27 Yero r 0

So the temperature scales with the square root of the distance 7.

5.3 Temperature of Outer Space

While the argument and derivation in should work quite well as
rough approximation, an interesting point of historical consideration is that
Jules Verne mentions not only in his current work [I2} ch. I/16, line 3840] but
also, for instance, in his novel [II] that Fourier estimated the temperature of
outer space to be about —60 °C. While this exact number is not stated there, in
[3] the temperature of outer space is mentioned as probably “little below that
of the polar regions”. According to Fourier, this constant temperature of every
point in space is caused by the radiation of the vast multitude of stars in the
universe — so this idea is in some sense quite similar to the modern notion of
the cosmic microwave background.

While Fourier’s temperature is of course wrong, I think it prudent to repeat
the modeling of Gallia’s temperature under the assumption that Fourier was
correct; after all, this is also the impression that Jules Verne had.
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Date Temperature Reference

Tan, 15th, 1 50°C | [0, ch. 1/8] |12, ch. 1/8, line 1580]
Feb, 11th, 1 15°C-20°C | [I5, ch. 1/12]  [I2, ch. 1/12, line 2538
Feb, 25th, 1 —2°C | [I5, ch. 1/17]  [I2, ch. 1/17, line 3999
Mar, 6th — 10th, 1 —6°C | [15, ch. 1/20]  [IZ, ch. 1/20, line 5028
Mar, 20th, 1 —8°C | [I5, ch. 1/21] [ ch. 1/21, line 5438
Mar, 26th, 1 —12°C | [15] ch. 1/23]  [12| ch. 1/23, line 5787
Mar, 26th — Apr, 1st, 1 ~16°C | [15, ch. 1/23]  [12, ch. 1/23, line 5837
Apr, 15th, 1 —22°C | [15] ch. I/24]  [12] ch. 1/24, line 6049
Apr, 23rd — May, 12th, 1 —30°C | [15} ch. II/5]  [12] ch. II/4, line 7302
Dec, 20th, 1 —53°C | [I5, ch. 11/12] [12} ch. II/11, line 9245]
Oct, 1st, 2 —35°C-—30°C | [I5, ch. 1I/15] [12, ch. II/14, line 10123]
Nov, 1st, 2 ~12°C——10°C | [I5, ch. 11/16] [I2, ch. II/15, line 10487
Dec, 1st, 2 0°C | [I5 ch. II/17]

Table 5: Temperature statements in the book.

Let T = —60°C be the background temperature. In order to adapt the
model in we have to add an additional inward flow of heat Q such
that without the Sun’s radiation, T would be T instead of 0. This flow must be
just as large as to compensate the temperature emission at 7', namely

Q =47wR? - ero - 74,

so that it weighs up to Qoyut from at this temperature.
Then the balance becomes Qi + @ = Qout and solving for T in this new
setting results in

T(r) = {/S(r) -4 7 (21)

deTo

as extended version of As before, I want to eliminate the unknown
constants by introducing a reference point of temperature T at distance rg.

at this point implies

1-A = 1-A
+T4 & Sy =

deTo deTo

T4 = So

and so together with the equilibrium temperature at distance r
adapted for Fourier’s background radiation is

2
() = /55 (r-7")+T".

5.4 Putting it to the Test

In the temperature values specified in the book are summarized. As
before, there are some uncertainties with the dates in some places, so those may
not be considered accurate to a single day; but it should be precise enough for a
rough comparison with the models developed in [Section 5.2| and [Section 5.3 In
the cases where a time interval is given, the stated temperature falls somewhere
within it, but it is not clear, when exactly.
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Figure 9: Equilibrium temperatures and Jules Verne’s values.

shows a plot of those values together with the temperatures pre-
dicted by the above models (i.e., with and without consideration of Fourier’s
space temperature), where the distance r(¢) from the Sun is taken from
tion 4.4l

As reference point I chose 25°C at 1 AU distance, which is little above the
value stated for Feb, 11th, 1. Earth’s orbit was crossed on the 1st according to
so this seems reasonable to me.

Once again, for the equilibrium temperature as I considered, we can mirror
the values in time around the aphelion, this is also done in the figure. It seems
that Jules Verne considered it that way, too, as his values match up closely to
the mirrored ones. The real temperature around the aphelion is with —150°C
far lower than what Jules Verne anticipated and also lower than Fourier’s “min-
imum” temperature, but assuming Fourier to be right, Jules Verne correctly
predicted that the aphelion temperature would be nearly that —60°C. In the
middle — as already with the distances and orbital speeds — he again cut the
curve short and did more of a linear interpolation.

Note that in reality, Gallia’s temperature will not be the equilibrium one for
its current position in general; because the distance from Sun changes contin-
uously and Gallia’s matter is “thermally inert” (heat capacity!), the tempera-
ture will lag somewhat behind the current solar radiation absorption and won’t
show that symmetrical pattern anymore. Jules Verne did clearly not consider
this phenomenon, and also my calculation assumed stationary temperatures to
match up with Verne’s statements as well as possible.
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