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The Model

Social Inequality

“In 2010, average real income per family [in the United
States| grew by 2.3 % but the gains were very uneven.
Top 1% incomes grew by 11.6 % while bottom 99 %
incomes grew only by 0.2 %. Hence, the top 1 % captured
93 % of the income gains in the first year of recovery.”
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The Model
The Social Space

Individuals described by three dimensions:

Power m € [0, 1]
to model possibly unfair political decisions, and

Labour a € [0,1]
Income / € [L, 00)

to model the economy.

Definition

My social space: U = [0, 1] x [0, 1] x [L, 00)
Individuals: x = (m, p) = (m,a,l) € U
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The Model

Strain Functions

Individuals try to maximise their personal happiness,
respectively minimise their strain:

Definition

f:[0,1] x [L,00) = R U {oo} is a strictly convex strain function:
@ f possesses certain regularity,
@ f is strictly increasing in a and decreasing in /, and

@ f is strictly convex.
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Strain Functions

Indifference curves for f(a, I) = e® - log |

Income |

Labour a



The Model

Coupling the Individuals

Of course, single individuals do not yet form a society!



The Model

Coupling the Individuals

Of course, single individuals do not yet form a society!

We require a closed economy: ZnN:I an = 221:1 In

Normalisation of powers: EHNZI mp =1



The Model

Coupling the Individuals

Of course, single individuals do not yet form a society!

We require a closed economy: ZnN:I an = 221:1 In

Normalisation of powers: EHNZI mp =1

Definition

Q C UN is the set of all configurations X = (xi,...,xy) that
satisfy these conditions. x; are the individuals in my social space.
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where v € [0, 1].




The Model
“Dynamics” of the System

Definition
We define the abstract energy H : Q@ — R U {o0}:

H(X) = EN: (% + @ =2)mn) f(an, ),

n=1

where v € [0, 1].

Assume that the system tries to minimise H over €.
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The Model
“Dynamics” of the System

For a temperature T > 0 (or equivalently 5 = ﬁ > (0) assume a
Boltzmann distribution (canonical ensemble):

Definition
For A C €, define its probability as

1
Tr(A) = 2 /A e M) gx,

where

Z = / e PHX) gx.
Q
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Theoretical Analysis
Structure of the Minimum

Let vy =1. Then X € Q is a global minimum of H over Q iff
an=1Il,=a" foralln=1,...,N.

* is the minimum of a — f(a, a) over [L,1]

Theorem
Let v < 1, then X* € Q of the form

| m
A\

((1 317 )7 (07 387 /8)7 ] (07 33’ Ig))

minimises H over Q. aj,aj € [0,1] and Iy, I{ > L depend on f and
the parameters.
This minimum is unique up to permutation of the individuals.
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A Simplified Problem

O ON-1
min fny(ao, lo) + (% +(1— 7)) f(a1, h),

ao,l,a1,h

where ag,a; € [0,1], lp,h > L and

(N — ].)ao + a1 = (N — 1)/0 + /1.



Theoretical Analysis
A Simplified Problem

O ON-1
min fny(ao, lo) + (% +(1— 7)) f(a1, h),

ao,l,a1,h

where ag,a; € [0,1], lp,h > L and
(N — ].)ao + a1 = (N — 1)/0 + /1.
Can be solved for instance by:

@ Gradient projection techniques, or

@ Newton's method applied to the Lagrangian.
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Further Results
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Theoretical Analysis
Further Results

Consider the simplified problem.

f(a1, h) < f(ao, b)
If v <~', we also have f(ag, ) > f(ap, Iy) and f(a1, h) < f(a, ).

Let f be everywhere finite.

The minimiser (ao, lo, a1, i) € R* depends continuously on ~.

If v < 1, we have ag > Iy and a; < .
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Simulation Results

Metropolis Algorithm

Calculation of Z and expectation values intractable!
— Numerical simulation, Monte-Carlo method

Custom Metropolis algorithm:
@ Generate configurations sampled by 7.

@ Markov process, updating “current” configuration.
e We need %, but not P (X) directly.
— Z drops out!
o This generates a “time series”, but does not imply

anything about real time evolution!
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Simulation Results

A Phase Transition

Energy Histogram for § = 16.3
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Simulation Results

A Phase Transition
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Simulation Results

Infinite Volume Limit

Energy H
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@ We set up a model describing individuals in a social space.

@ It is crucial to model the power distribution!
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@ We set up a model describing individuals in a social space.
@ It is crucial to model the power distribution!
@ This model inherently shows social inequality.

@ Transition happens as a first-order phase transition,
breaking permutation symmetry spontaneously.

Thanks for your attention!
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