◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Political Power and Socio-Economic Inequality

An Application of the Canonical Ensemble to Social Sciences

Daniel Kraft

July 25th, 2012

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The Model

Social Inequality

"In 2010, average real income per family [in the United States] grew by 2.3% but the gains were very uneven. Top 1% incomes grew by 11.6% while bottom 99% incomes grew only by 0.2%. Hence, the top 1% captured 93% of the income gains in the first year of recovery."

Social Inequality

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Social Space

Individuals described by three dimensions:

The Social Space

Individuals described by three dimensions:

Labour
$$a \in [0, 1]$$

Income $l \in [L, \infty)$

to model the economy.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Social Space

Individuals described by three dimensions:

Power $m \in [0, 1]$ to model possibly unfair political decisions, and

```
Labour a \in [0, 1]
Income l \in [L, \infty)
```

to model the economy.

The Social Space

Individuals described by three dimensions:

Power $m \in [0, 1]$ to model possibly unfair political decisions, and

Labour $a \in [0, 1]$ Income $l \in [L, \infty)$

to model the economy.

Definition

My social space:
$$U = [0, 1] \times [0, 1] \times [L, \infty)$$

Individuals: $x = (m, p) = (m, a, l) \in U$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Strain Functions

Individuals try to **maximise their personal happiness**, respectively minimise their *strain*:

Strain Functions

Individuals try to **maximise their personal happiness**, respectively minimise their *strain*:

Definition

- $f:[0,1] \times [L,\infty) \to \mathbb{R} \cup \{\infty\}$ is a strictly convex strain function:
 - f possesses certain regularity,
 - f is strictly increasing in a and decreasing in l, and
 - f is strictly convex.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Strain Functions

A note on convexity, a. k. a. decreasing marginal utility:

Strain Functions

A note on convexity, a. k. a. decreasing marginal utility:

(ロ) (四) (三) (三) (三) (0)

Strain Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coupling the Individuals

Of course, single individuals do not yet form a society!

Coupling the Individuals

Of course, single individuals do not yet form a society!

We require a *closed economy*: $\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} I_n$ Normalisation of powers: $\sum_{n=1}^{N} m_n = 1$

Coupling the Individuals

Of course, single individuals do not yet form a society!

We require a *closed economy*: $\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} I_n$ Normalisation of powers: $\sum_{n=1}^{N} m_n = 1$

Definition

 $\Omega \subset U^N$ is the set of all configurations $X = (x_1, \ldots, x_N)$ that satisfy these conditions. x_i are the individuals in my social space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Dynamics" of the System

Definition

We define the abstract energy $\mathcal{H} : \Omega \to \mathbb{R} \cup \{\infty\}$:

$$\mathcal{H}(X) = \sum_{n=1}^{N} \left(\frac{\gamma}{N} + (1-\gamma)m_n\right) f(a_n, I_n),$$

where $\gamma \in [0, 1]$.

"Dynamics" of the System

Definition

We define the abstract energy $\mathcal{H}:\Omega\to\mathbb{R}\cup\{\infty\}$:

$$\mathcal{H}(X) = \sum_{n=1}^{N} \left(\frac{\gamma}{N} + (1-\gamma)m_n\right) f(a_n, I_n),$$

where $\gamma \in [0, 1]$.

Assume that the system tries to **minimise** \mathcal{H} over Ω .

"Dynamics" of the System

For a temperature T > 0 (or equivalently $\beta = \frac{1}{kT} > 0$) assume a **Boltzmann distribution** (canonical ensemble):

"Dynamics" of the System

For a temperature T > 0 (or equivalently $\beta = \frac{1}{kT} > 0$) assume a **Boltzmann distribution** (canonical ensemble):

Definition

For $A \subset \Omega$, define its probability as

$$\pi_T(A) = rac{1}{\mathcal{Z}} \int_A e^{-eta \mathcal{H}(X)} dX,$$

where

$$\mathcal{Z} = \int_{\Omega} e^{-\beta \mathcal{H}(X)} \, dX.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Theoretical Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Structure of the Minimum

Theorem

Let $\gamma = 1$. Then $X \in \Omega$ is a global minimum of \mathcal{H} over Ω iff

$$a_n = I_n = a^*$$
, for all $n = 1, ..., N$.

 a^* is the minimum of $a \mapsto f(a, a)$ over [L, 1].

Structure of the Minimum

Theorem

Let $\gamma = 1$. Then $X \in \Omega$ is a global minimum of \mathcal{H} over Ω iff

$$a_n = I_n = a^*$$
, for all $n = 1, \ldots, N$.

 a^* is the minimum of $a \mapsto f(a, a)$ over [L, 1].

Theorem

Let $\gamma < 1$, then $X^* \in \Omega$ of the form

$$X^* = ((1, a_1^*, l_1^*), (0, a_0^*, l_0^*), \dots, (0, a_0^*, l_0^*))$$

minimises \mathcal{H} over Ω . $a_0^*, a_1^* \in [0, 1]$ and $l_0^*, l_1^* \geq L$ depend on f and the parameters. This minimum is unique up to permutation of the individuals.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Simplified Problem

$$\min_{\boldsymbol{a}_0,\boldsymbol{l}_0,\boldsymbol{a}_1,\boldsymbol{l}_1} \gamma \frac{N-1}{N} f(\boldsymbol{a}_0,\boldsymbol{l}_0) + \left(\frac{\gamma}{N} + (1-\gamma)\right) f(\boldsymbol{a}_1,\boldsymbol{l}_1),$$

where $a_0, a_1 \in [0, 1], \ l_0, l_1 \ge L$ and

$$(N-1)a_0 + a_1 = (N-1)l_0 + l_1.$$

A Simplified Problem

$$\min_{\boldsymbol{a}_0,\boldsymbol{l}_0,\boldsymbol{a}_1,\boldsymbol{l}_1} \gamma \frac{N-1}{N} f(\boldsymbol{a}_0,\boldsymbol{l}_0) + \left(\frac{\gamma}{N} + (1-\gamma)\right) f(\boldsymbol{a}_1,\boldsymbol{l}_1),$$

where $a_0, a_1 \in [0, 1], \ l_0, l_1 \ge L$ and

$$(N-1)a_0 + a_1 = (N-1)l_0 + l_1.$$

Can be solved for instance by:

- Gradient projection techniques, or
- Newton's method applied to the Lagrangian.

A Simplified Problem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Further Results

Consider the simplified problem.

Theorem

 $f(a_1, l_1) \leq f(a_0, l_0)$

If $\gamma < \gamma'$, we also have $f(a_0, l_0) \ge f(a'_0, l'_0)$ and $f(a_1, l_1) \le f(a'_1, l'_1)$.

Further Results

Consider the simplified problem.

Theorem

 $f(a_1, l_1) \leq f(a_0, l_0)$

If $\gamma < \gamma'$, we also have $f(a_0, l_0) \ge f(a_0', l_0')$ and $f(a_1, l_1) \le f(a_1', l_1')$.

Let f be everywhere finite.

Theorem

The minimiser $(a_0, l_0, a_1, l_1) \in \mathbb{R}^4$ depends continuously on γ .

Further Results

Consider the simplified problem.

Theorem

 $f(a_1, l_1) \leq f(a_0, l_0)$

If $\gamma < \gamma'$, we also have $f(a_0, l_0) \ge f(a_0', l_0')$ and $f(a_1, l_1) \le f(a_1', l_1')$.

Let f be everywhere finite.

Theorem

The minimiser $(a_0, l_0, a_1, l_1) \in \mathbb{R}^4$ depends continuously on γ .

Theorem

If $\gamma < 1$, we have $a_0 > l_0$ and $a_1 < l_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Simulation Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Metropolis Algorithm

Calculation of \mathcal{Z} and expectation values intractable! \rightarrow Numerical simulation. Monte-Carlo method

Metropolis Algorithm

Calculation of $\mathcal Z$ and expectation values intractable! \rightarrow Numerical simulation, Monte-Carlo method

Custom Metropolis algorithm:

• Generate configurations sampled by π_T .

Metropolis Algorithm

Calculation of \mathcal{Z} and expectation values intractable!

 \rightarrow Numerical simulation, Monte-Carlo method

Custom Metropolis algorithm:

- Generate configurations sampled by π_T .
- Markov process, updating "current" configuration.
- We need $\frac{P(X')}{P(X)}$, but not P(X) directly. $\rightarrow \mathcal{Z}$ drops out!

Metropolis Algorithm

Calculation of $\mathcal Z$ and expectation values intractable!

 \rightarrow Numerical simulation, Monte-Carlo method

Custom Metropolis algorithm:

- Generate configurations sampled by π_T .
- Markov process, updating "current" configuration.
- We need $\frac{P(X')}{P(X)}$, but not P(X) directly. $\rightarrow \mathcal{Z}$ drops out!
- This generates a "time series", but does not imply anything about real time evolution!

Energy Expectation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

A Phase Transition

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

A Phase Transition

Infinite Volume Limit

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We set up a model describing individuals in a social space.
- It is *crucial* to model the **power distribution**!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We set up a model describing individuals in a social space.
- It is *crucial* to model the **power distribution**!
- This model inherently shows social inequality.
- Transition happens as a **first-order phase transition**, breaking permutation symmetry spontaneously.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- We set up a model describing individuals in a social space.
- It is *crucial* to model the **power distribution**!
- This model inherently shows social inequality.
- Transition happens as a **first-order phase transition**, breaking permutation symmetry spontaneously.

Thanks for your attention!