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Social Inequality

“In 2010, average real income per family [in the United
States] grew by 2.3 % but the gains were very uneven.
Top 1 % incomes grew by 11.6 % while bottom 99 %
incomes grew only by 0.2 %. Hence, the top 1 % captured
93 % of the income gains in the first year of recovery.”
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The Social Space

Individuals described by three dimensions:

Power m ∈ [0, 1]
to model possibly unfair political decisions, and

Labour a ∈ [0, 1]

Income l ∈ [L,∞)

to model the economy.

Definition

My social space: U = [0, 1]× [0, 1]× [L,∞)
Individuals: x = (m, p) = (m, a, l) ∈ U
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Strain Functions

Individuals try to maximise their personal happiness,
respectively minimise their strain:

Definition

f : [0, 1]× [L,∞)→ R ∪ {∞} is a strictly convex strain function:

f possesses certain regularity,

f is strictly increasing in a and decreasing in l , and

f is strictly convex.
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Strain Functions

A note on convexity, a. k. a. decreasing marginal utility:
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Strain Functions
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Coupling the Individuals

Of course, single individuals do not yet form a society!

We require a closed economy:
∑N

n=1 an =
∑N

n=1 ln

Normalisation of powers:
∑N

n=1 mn = 1

Definition

Ω ⊂ UN is the set of all configurations X = (x1, . . . , xN) that
satisfy these conditions. xi are the individuals in my social space.
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“Dynamics” of the System

Definition

We define the abstract energy H : Ω→ R ∪ {∞}:

H(X ) =
N∑

n=1

( γ
N

+ (1− γ)mn

)
f (an, ln),

where γ ∈ [0, 1].

Assume that the system tries to minimise H over Ω.
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“Dynamics” of the System

For a temperature T > 0 (or equivalently β = 1
kT > 0) assume a

Boltzmann distribution (canonical ensemble):

Definition

For A ⊂ Ω, define its probability as

πT (A) =
1

Z

∫
A

e−βH(X ) dX ,

where

Z =

∫
Ω

e−βH(X ) dX .
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Theoretical Analysis



The Model Theoretical Analysis Simulation Results

Structure of the Minimum

Theorem

Let γ = 1. Then X ∈ Ω is a global minimum of H over Ω iff

an = ln = a∗, for all n = 1, . . . ,N.

a∗ is the minimum of a 7→ f (a, a) over [L, 1].

Theorem

Let γ < 1, then X ∗ ∈ Ω of the form

X ∗ = ((1, a∗1, l
∗
1 ), (0, a∗0, l

∗
0 ), . . . , (0, a∗0, l

∗
0 ))

minimises H over Ω. a∗0, a
∗
1 ∈ [0, 1] and l∗0 , l

∗
1 ≥ L depend on f and

the parameters.
This minimum is unique up to permutation of the individuals.
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A Simplified Problem

min
a0,l0,a1,l1

γ
N − 1

N
f (a0, l0) +

( γ
N

+ (1− γ)
)

f (a1, l1),

where a0, a1 ∈ [0, 1], l0, l1 ≥ L and

(N − 1)a0 + a1 = (N − 1)l0 + l1.

Can be solved for instance by:

Gradient projection techniques, or

Newton’s method applied to the Lagrangian.
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Further Results

Consider the simplified problem.

Theorem

f (a1, l1) ≤ f (a0, l0)

If γ < γ′, we also have f (a0, l0) ≥ f (a′0, l
′
0) and f (a1, l1) ≤ f (a′1, l

′
1).

Let f be everywhere finite.

Theorem

The minimiser (a0, l0, a1, l1) ∈ R4 depends continuously on γ.

Theorem

If γ < 1, we have a0 > l0 and a1 < l1.
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Metropolis Algorithm

Calculation of Z and expectation values intractable!
→ Numerical simulation, Monte-Carlo method

Custom Metropolis algorithm:

Generate configurations sampled by πT .

Markov process, updating “current” configuration.

We need P(X ′)
P(X ) , but not P (X ) directly.

→ Z drops out!

This generates a “time series”, but does not imply
anything about real time evolution!
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Energy Expectation
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A Phase Transition
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A Phase Transition
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Infinite Volume Limit
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Summary

We set up a model describing individuals in a social space.

It is crucial to model the power distribution!

This model inherently shows social inequality.

Transition happens as a first-order phase transition,
breaking permutation symmetry spontaneously.

Thanks for your attention!
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